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The elastic strain energy in reduced tungsten trioxide, which contains crystallographic shear (CS) planes, 
has been calculated using Fourier transform theory. This allows the effects of non nearest-neighbor CS 
planes to be evaluated, and also enables one to assess the relaxation energy of ions in the CS planes as well 
as the strain energy of the matrix between the CS planes. The results are presented for {lOm} (2 cm G 7) 
and {OOl} CS plane types. They are compared with experimental data and also with the results of previous 
calculations using classical elasticity theory. 

1. Introduction 

Stoichiometric tungsten trioxide is built up 
of an infinite array of corner-sharing W06 
octahedra. The crystal structure of tungsten 
trioxide is nearly cubic and when idealized is 
isostructural with the cubic Re03 (Dog) 
structure (1-3). When tungsten trioxide is 
reduced to compositions down to approxi- 
mately W02.ss or when certain lower valent 
metals are doped into tungsten trioxide, 
crystallographic shear (CS) planes are 
formed (4-7). If the degree of reduction is 
small, that is, from W03 to approximately 
W02.95, the CS planes lie upon (102) planes. 
As the degree of reduction increases, (103) 
CS planes are formed in preference to (102) 
(4-7). In tungsten trioxide doped with Nb 
and Ti, although the (102) and (103) CS 
sequence is adhered to, (001) CS planes 
seem to be favored and form in preference to 
extended (102) or (103) ranges. CS planes 
with indices between (103) and (001) also 

occur, particularly in the Nb205-W03 
oxides, where well-ordered (104) CS phases 
have been recorded (B-10). 

Anderson (11) suggested that strain 
energy may play a significant role in control- 
ling the microstructure of CS phases. 
Following this, Stoneham and Durham (12) 
and Iguchi and Tilley (13, 14) have cal- 
culated the strain energy due to CS planes in 
W03-like structures, but from different 
standpoints. Stoneham and Durham 
obtained the relaxation energy due to the 
interaction between defect forces in (001) CS 
planes, while Iguchi and Tilley computed the 
strain energy of ions in the matrix between 
CS planes. Stoneham and Durham 
employed, in their calculation, the Fourier 
transformation method which can be used 
for infinite ordered arrays and for pairs of CS 
planes. On the other hand, Iguchi and Tilley 
computed the strain energies using classical 
methods, which makes the calculations more 
complicated, but is compensated for as their 
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treatment can be applied not only to ordered 
arrays but also to other plausible dis- 
tributions of CS planes. It should be noted 
that the total strain energy is the sum of the 
relaxation energy which Stoneham and 
Durham obtained and the strain energy of 
the matrix which Iguchi and Tilley evaluated. 

It would be desirable to estimate both the 
relaxation energy and the strain energy of the 
matrix by the same methods and compare the 
magnitudes of the energy terms involved. 
However, as the number of CS plane 
geometries is high the only practical way of 
making both these estimates is to use the 
compact and elegant Fourier transform 
method. However, the use of this technique 
presupposes that the whole of the crystal 
containing CS plane arrays can be treated as 
an elastic continuum. In a previous paper 
(15) the available experimental evidence was 
compared to the results of calculations for 
(001) CS planes to determine whether such 
an approximation was a reasonable one to 
make. The results suggested that the W03 
lattice could be treated in this way, although 
the more ionic Nb02F was not so suitable for 
Fourier transform methods. 

Following this, we have obtained both the 
relaxation energy and the strain energy of 
ions caused by CS planes in reduced W03 in 
a way similar to that employed by Shimizu 
and Iguchi for TiOz (Id). The results of these 
calculations are given here, and compared 
with experimental observations and results 
published previously. 

2. Theory 

The structures of WOs and the {lOm} CS 
phases have been fully described in the past 
and will not be reiterated here. In general 
when structural features need to be illus- 
trated we will refer to (102) CS geometry 
unless, for reasons of clarity, other CS planes 
need to be shown. For completeness, we 
include in Fig. la an idealized representation 
of the W03 (Re03) structure, composed of 

(a) ib! 

FIG. 1. Idealized representations of (ai U’Oi,. ib) 
WISOj3, an oxide containing (10.1) CS planes. 

corner-sharing MO6 octahedra, and in Fig. 
lb a (103) CS plane in a W09 matrix. 

The strain energy, U, due to an infinite 
ordered array of { 10m) CS planes in an oxide 
of formula Wn03n-(m-lj is written as follows 
(16): 

u= us- UR, (11 

where UR represents the relaxation energy 
of ions in the CS planes and Us represents 
the strain energy of ions in the matrix due to 
forces arising in the CS planes. The cal- 
culation of Us and UR makes use of linear 
elasticity theory. 

In order to simplify the calculations we 
have made a number of approximations. 
First we have assumed that the whole of the 
crystal, that is, both the CS planes and the 
regions between them, could be treated as an 
isotropic continuum, which allowed us to use 
the Fourier transform technique (15). In 
addition we have idealized the crystal struc- 
ture of W03 to the cubic ReOa (Dog) type, 
and assumed that the forces which cause the 
strain in the crystal are the same as those 
employed in our previous papers (13-15) 
and are short-range forces due to cation- 
cation intractions within the CS planes. To 
illustrate this, the forces supposed to be 
present in each unit of a (102) CS plane are 
shown in Fig. 2. 

Long-range forces arising from all other 
ions in the lattice will also be present and 
have been considered by Dienes et al. (17) 
and Catlow (28) in other systems. To 
consider them here the physical properties of 
tungsten trioxide need to be known. 
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FIG. 2. Defect forces assumed to be present within a 
unit of a {102} CS plane. The cross in the center is the 
origin of the coordinates, x- and z-axes of which are 
indicated as well. The sites at which defect forces 
operate are represented with vectors rlr r2, r3, and rd. 

Unfortunately, those that are needed have 
not yet been determined or reported. There- 
fore, we have assumed that the long-range 
forces are negligibly small. 

For the purposes of the calculations we 
have chosen the origin of the coordinate axes 
to be in the center of a unit in a {lOm} CS 
plane and we have taken x-, y-, and z-axes 
parallel to the a-, b-, and c-crystal axes, 
respectively. In Fig. 3a we have illustrated 
this for a {102} CS plane. The periodic unit 
cell for an infinite ordered array of {lOm} CS 
planes in an oxide with formula Wn03n-(m-lj 
can be constructed with vectors A, B, and L,, 
where 

A=4(ma-c), 

B=2b, (2) 

L, = 2(2n - 2m + l)a+ 2c. 

In these equations, the primitive trans- 
lation vectors of the W03 lattice, a, b, c, are 

a = (a/4)i, 

b = (d%, (3) 
c = (a/4)k, 

where a is the lattice constant, and i, j, and k 

indicate the unit vectors along the x-, y-, and 
z-axes. The structure of an infinite ordered 
array of CS planes can be constructed by the 
formal geometrical translation T, given by 

T = nlA + nzB + n3L,, (4) 

where nl, n2, and n3 are integers. 
The homologous series of oxides which 

have ordered arrays of (001) CS planes are 
represented by the formula W,03n-1. This 
series can be treated in the same way to other 
homologous series except the vectors A, B, 
and L, which have the following form, as 
indicated in Fig. 3b: 

A=4a, 

B=2b, 

L, = -2a - 2(2n - 1)~. 

(2’) 

The energy terms Us and Un have been 
obtained in a way similar to the calculations 
in rutile (16). Following this procedure the 
relaxation energy, Un, is written as a sum 
over the first Brillouin zone of the lattice. 

Gt=wmCF,(r)~~ 
I a 

xe-iq’&p(q)&(q), (5) 

where N is the number of the unit cells, F,(c) 
represents the crth component of the defect 
force at r, F@(q) is the Pth component of the 
Fourier transformed force, &(q) denotes 
the apth component of the Fourier trans- 
formed Green’s function, 1, or Es indi- 
cates the summation of every component 
of the defect force, and C, means the sum- 
mation of the relaxation energies of all ions 
in the cell. 

The strain energy of ions in the periodic 
unit, Us, is assumed to be expressed as 
follows: 

us = c (4&/3)w(r), (6) I 

where c, has a meaning similar to that in Eq. 
(5), and w(r) represents the strain energy 
density of the ion at r, the ionic radius of this 



FIG. 3. The idealized structures of (aj W 9 0 26r an oxide containing {102} CS planes; (b) W5014, an 
oxide containing {OOl} CS planes. The broken lines represent the periodic unit cells. The vectors, A, t,, lie 
upon the {OlO} plane and the vector B is normal to the (010) plane. The lattice constant a and the crystal 
axes a, c are also indicated. 

ion being abbreviated as rr. As linear elastic where qr is the 2th component of the wave 
theory is used, the unit cell volume should be vector q and every other notation has the 
used theoretically instead of the ionic volume same meaning as in Eq. (5). 
in Eq. (6). The tungsten trioxide structure, The forces in the infinite ordered array 
however, consists of edge-shared W06 repeat under the translation T and ail trans- 
octahedra as shown in Fig. 1 and has chains forms E(q) vanish unless q reflects this trans- 
of voids. The volume of the voids is nearly formation. Then each component of wave 
equal to the volume of ions. Thus, in order to vector q can be written as 
prevent overestimation of the strain energy 
of ions, we have made the assumption q = klx, 4y, sz), 
represented in Eq. (6). The strain energy 
density for a cubic elastic continuum has the qx = [2n/(2n - m + l)a](H + 2M), 

form (19) 4y = (2daM 
(9) 

W =+CII ,cl ei + C12 2 eiie,, 
qz = [27r/(2n -m + l)a] x 

i,j=l 
[-(2n - 2m + l)H + 2mM], 

+2C44 i ez (i #j), (7) 
i,j=l where H, .I, and M are integers. 

where the klth component of the strain at r, The strain energy of the ions and the 

e&r), is given by the use of the Fourier relaxation energy can be obtained as a sum 

transformation as follows: over discrete values of q in the first BriIiouin 
zone of the lattice, i.e., -(4r/a) s qX, qZ < 

eklb) = -WN) c q eiqr 5 [dkdd (47rfa) and -(27r/u)~ q,, < (2?r/a). 
The Fourier transformed Green’s func- 

+4k& h)l&?(q)~ (8) tion for a cubic elastic continuum is given 
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as (20) 

C44GijCQ) = (l/q21 

where the Ki are the direct cosines (qi/q) of q 
and 

Ai = (1 +SK;)-‘. (11) 
The dimensionless factors depend only on 
the elastic constants, C;,, 

Y = (Cl2 + C44llC44, 

s=(c,,-c12-2c44)/c44. 
(12) 

As the elastic constants of W03 have not yet 
been determined, we have used the same 
ratios of the elastic constants as in our 
previous papers (13, 14), viz., 

G:C12:C44=16:7:5. (13) 
As shown in Fig. 2, one unit in a (10~~) CS 

plane has 2m cations at which the forces 
operate. We have taken the vectors to those 
cations from the origin, rl, r2,. . . , r2m, as 
shown in Fig. 2. In the case of the (102) CS 
plane, the forces and the sites at which they 
operate are 

site r force F(r) 

rl, (-3a/4,0, -a/4) f/2”‘(-l, O, -1) 
r2, (4% 0, -a/4) f/2”2(o, 0, -2) 
r3, (3a/4,0, a/4) f/2”2(L 0, 1) 

r4, (-a/4 0,441 f/2”2(o, 092) 
The defect forces and sites in other {lOm} CS 
planes are quite similar to those in the (102) 
case and, then, the following relations are 
obtained: 

r; = -ritm, 

(i C m). 
(14) 

The Fourier transformed E(q) is then given 
as 

Sfl(q) = C Fp(r) eiqr 
r 

=2i $J Fp(ri) Sin (Cjri), (15) 
r=r, 

where I::,, indicates summation over the 
sites at which the defect forces act. The 
following ionic radii for 02-- and W6+, r. and 
rw, were used in this calculation: r. = 1.40 A, 
rw = 0.60 8, (21). 

3. Results and Discussion 
As in our previous papers we have 

attempted to calculate the elastic strain 
energy of crystals containing CS planes. We 
then assumed that the favored microstruc- 
tures in real crystals would be those cor- 
responding to the smallest strain energy. A 
comparison of the results with experimental 
observations on crystals containing CS 
structures showed that good agreement 
existed when the relaxation energy of the 
ions was ignored. In the results and dis- 
cussion that follow we have repeated this 
procedure, but have also calculated the 
relaxation energy as well. We have therefore 
treated the same situations as before, that is, 
the stability of isolated CS planes, the rela- 
tive stability of arrays of various {lOm} CS 
planes, and the relative stability of homologs 
within a series of oxides based on one CS 
plane type. 

A. The Strain Energy per Unit Area per CS 
Plane 

First we have calculated the strain energy 
and the relaxation energy per unit area per 
CS plane for crystals with formulas 
Wn03n-(m-1) (2 <rn s7) and W,03n-i 
((001) CS planes), (Us)* and (&)A, respec- 
tively, and plotted them as a function of II 
in Figs. 4 and 5. The vertical axes of 
these figures are plotted in units of 
[(f/d’/c441/[~1”.’ 

r In this report we have calculated the strain energy 
per unit area per plane in units of [(f/=)z/C4,]/[L]3 and 
the strain energy per unit volume in units of 
wT~2/C44allrL13, where [L] represents the dimen- 
sion of length. Therefore, if f and Cd4 are represented in 
units of (eV/A) and (eV/A3), respectively, [L] will be in 
units of (A). Then [(f/n)2/C&[L]3 is represented in 
units (eV/A*) and [(f/n)*/&,~]/[L]~ in units of 
(eV/A3). 
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FIG. 4. The strain energy of ions per unit area per 
plane, (Us), vs n in Wn03n-(m-lj. The vertical axis on 
the left-hand side represents units of (~/v)/CJ[L]‘. 

The (us), curves are seen to be oscil- 
latory, i.e., they have series of peaks and 
valleys with a periodicity of dn = m, except 
the (001) case. This behavior is the same as 
that found previously using classical methods 
of evaluating the strain energy of ions in the 
matrix between CS planes and is due to 
the relative dispositions of the CS planes in 
the array (14). Apart from this feature, the 
strain energy per unit area can be seen to be 
relatively constant, apart from the lowest n 
value region. 

In our previous papers, we could not 
evaluate the strain energy within CS planes, 
and so we treated this term as an unknown 
parameter, Uself (13). This term consists of 
the relaxation energy due to the interaction 
between forces in one CS plane and the 

i,-~~-L----L- i-..-~~~ ~~I~ ~_~ ~I- _ _ 
a 20 3” 41 

FIG. 5. The relaxation energy per unit area per plane, 
(U,),, as a function of the n value. 

strain energy of ions within this CS plane 
caused by the forces in this plane. In the 
theoretical treatment used here, the strain 
energy of ions within one CS plane, one part 
of Uself, is included in (US)A. This term is an 
eigenvalue, being independent of the sur- 
rounding CS planes. Therefore, the fact that 
no general increase of ( CTSjA with increasing 
n is observed indicates that the strain energy 
within one CS plane plays a dominant role in 
(Us),. 

Unlike (Us), the values of (URJa are 
always found to be negative. This may be due 
to the fact that each cation in a CS plane is 
attracted to the inside of the CS plane by 
other forces in that CS plane. This result 
coincides with that in reduced rutile (16) and 
may be a general property of CS planes. As 
shown in the figures, the relaxation energy is 
larger than the strain energy of the ions and 
should play an important role in controlling 
the microstructures of CS phases in those 
situations where the CS plane itself can be 
regarded as an isotropic continuum. 

In Fig. 6, the total energy UA, the sum- 
mation of (Us), and -( UR)*, has been plot- 
ted as a function of n. The striking feature is 
that VA is smallest for (001) CS, and then we 
pass through a series, with (102) being the 
next lowest, and so on. Although we have not 
included relaxation energy in our previous 
calculations, these new results are still in 
close accord with the earlier sequence, and 

~~ _~~~ .._ >r m k 7 
FIG. 6. The strain energy per unit area per plane, UA, 

vs n, where LJ, = (Us), - (U,),. 
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reemphasize that in terms of strain energy, 
(001) CS planes should always be the most 
favored. 

A second point to note is that VA 
decreases as n increases in each case. The 
variation of VA with change of II is, however, 
small, which means that surrounding CS 
planes in the ordered array contribute only 
slightly to UA compared with Uself, i.e., the 
contribution from the CS plane in which we 
have chosen the origin of the coordinates as 
described before. This result is important, as 
it shows that neglect of nearest-neighbor CS 
planes is not so important. Thus, in cases 
where CS planes cannot be treated as iso- 
tropic continua and where Fourier trans- 
formation techniques cannot be used, the 
results obtained by classical analysis are 
reliable. 

B. Isolated CS Planes 
The result in Fig. 6 suggests that the LJ, 

value in every case will tend to some constant 
value at high n value, which means that the 
VA values at n = CQ are insensitive to the 
interactions due to surrounding CS planes. If 
an isolated CS plane is introduced into a 
single crystal, the increase in energy per unit 
area of the CS plane should be equivalent to 
the U, value extrapolated to n = CC in Fig. 6. 
In Fig. 7 we have plotted ‘UA, ‘(US)*, and 
-“(UR)A as a function of m, which are 
obtained by extrapolating UA, (Us)*, and 
-(UR)* to n = CO in Fig. 6. 

As the relaxation energy is the largest 
component of the strain energy, the behavior 
of ‘VA is quite similar to that of -“( &)A. It 
is found that the ‘VA curve has a peak at 
m = 3 to 4, the maximum at m = 6 to 7, and a 
valley at m = 4 to 5, and the VA value is then 
likely to decrease smoothly to (001) (m = 00) 
as m increases beyond m = 7. 

‘(Us)* decreases as m increases but this 
curve has a pronounced series of peaks and 
valleys. In our previous report (14), the 
strain energy of ions in the matrix between 
CS planes extrapolated at n = 00 had a 

I , ,  
2 1 1 i 6 I  D  

FIG. 7. The energy terms per unit area per plane, 
oun, ok, and -O( U& which are obtained by 
extrapolating each term to n = CO in Figs. 5 and 6, are 
plotted as a function of m. 

maximum at m = 3-4 but decreased 
smoothly as m increased beyond m = 4. The 
result in this report, therefore, coincides with 
our previous result in the fact that the strain 
energy of ions extrapolated at n = CO has a 
peak at m = 3-4, but the series of peaks and 
valleys which appears in this study are rather 
different. The reason for this is that here we 
also include the strain energy of the ions in 
the CS plane themselves, Uself, and not just 
those between CS planes, as in the past. 
Unfortunately we cannot use this result to 
determine how well the Fourier transform 
method applies to WOs as the observations 
must be related to the overall curve ‘Ua, 
which, as we have pointed out, has a form 
similar to that observed from our more 
classical analysis. 

The overall shape of the Ua curve is 
similar to that presented before, and the 
same overall conclusion holds. It is once 
again found that the increase in strain energy 
when an isolated CS plane is introduced into 
a crystal is smallest for an (001) CS plane and 
then, apart from high m values which we 



have not calculated, the sequence is {102) c 
{103}1”(104} and so on, as shown in Fig. 7. 
This result reemphasizes the fact that the 
elastic strain energy alone does not control 
the formation of isolated C’S planes in 
slightly reduced oxides with the ReOi struc- 
ture. The various factors which also contri- 
bute to the formation energy of isolated CS 
planes have been dealt with in detail pre- 
viously (14, 22) and will not be considered 
further here. 

C. The Strain Energy of an Ordered Array of 
CS Planes 

In Fig. 8, we have plotted the strain energy 
per unit volume of oxide, Wn03n-im-lj, 
containing an ordered array of {lOm} CS 
planes as a function of the composition, x in 
WO,. The strain energy per unit volume, Uv, 
decreases to zero as x increases to 3.0 (the 
perfect crystal) and every curve of Uv vs x is 
almost linear. At any composition X, the 
elastic strain energy is lowest for (001) CS 
planes and highest for (102) CS planes, and 
Uv decreases as m in {lOm} increases. This 
result agrees with the results obtained in our 
previous paper (14) which employed a quite 
different model for CS planes. It can be seen 
that there is no crossover in energy curves, 
while in reduced rutile in which a similar 
model for CS planes was used, two energy 
curves intersect each other (16). 

FIG. 8. The strain energy Uv per unit volume in 
infinite ordered arrays of { 1 Om} CS planes (m = 2 - 7,co) 
as a function of the composition, x in WO,. 

Experimentally, isolated or paired i 1 [it i 
C’S planes are formed initially durtnp the 
preparation of samples which consist pre 
dominantly of WO1. As the heating time rs 
prolonged or if reduction conditions allow I:. 
the density of CS planes increases and the 
ordered arrays may be formed. As the strain 
energy of well-ordered {102) arrays ha% the 
largest value, one would expect these arrays 
to change to arrays with a higher m value and 
a smaller overall strain energy. According to 
Fig. 8, the transition from well-ordered { 102) 
arrays to the most stable {OOl} array/s will be 
the one giving the greatest gain in energy. 

As we have pointed out before (13) how 
this process will proceed is a question of 
mechanism and will particularly involve 
whether the reaction takes place totally in 
the solid or by way of vapor intermediates. 
We can, though, consider the relative stabil- 
ities of crystals containing arrays nf C’s 
planes. In general, if we have a crystal 
containing an ordered array of (1Omj CS 
planes, it can disproportionate to two arrays, 
one on {lO(m + 1)) planes and one on 
{lO(m - 1)) planes. If this process results in a 
gain in strain energy we can regard the {ZOm) 
array as stable while if the total strain energy 
after the hypothetical transformation is less 
than before we can regard the { 10m) array to 
be less stable than the pair of arrays { 1Ot m i 
1)) and {lO(m - 1)). Hence if C7~(nzi~ 
(U,(m + lji Uv(m - 1)}/2, at some com- 
position the { 1 Om} ordered array is stable at 
this composition, where Uvim ) represents 
the strain energy of an oxide of the formula 
Wn03n~.(m.-ll containing the (lOm] ordered 
array, and Uv(m + 1) or Uv(m - 1) indicates 
the strain energy of an oxide of the formula 
Wn103n,..m containing the (10, m + lj arrays 
or that of an oxide of W,,+,-(,~. 2, containing 
the {lo, m - 1) arrays. On the other hand, 
if U”(m) > {Uv(m + 1) + &(m - 1 j}j2, the 
{lOm} array is unstable and this phase would 
not be formed. 

There are a number of ways to present 
these data but we have chosen to do this 
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graphically, and for a composition of x = 
2.85. If we plot the strain energy values at the 
bottom of sharp-bladed curves of the sort 
postulated for the free energy variation with 
composition of CS phases (11) then we can 
use the common tangent rule to see which of 
the various {lOm} arrays are stable relative 
to their neighbors. The result is shown in Fig. 
9, which shows that the { 103) array and { 104) 
arrays are stable, but, as the (001) array is the 
most stable phase, they are, in the strict 
sense, metastable. The {lOm} arrays in which 
m Z5 are not even metastable phases. 
Therefore our results suggest that in the 
progression from (102) CS phases to the 
ordered (001) phases, the metastable (103) 
and (104) materials will also be observed 
experimentally. This prediction is in good 
agreement with the cases with Nb and Ti. 
Recently, in the Nb203-WOs system, the 
{ 104) ordered arrays observed to form in this 
oxide after heating for 2 or 3 days disap- 
peared and well-ordered (001) CS planes 
replaced them on heating to obtain thermal 
equilibrium state (Tilley, unpublished data). 
This experimental result agrees very well 
without our calculations. It is to be expected, 

I(, I. 
2  1 4 I e  ’ rnN”IX)rn, 

FIG. 9. The strain energy per unit volume in infinite 
ordered CS arrays as a function of m in {lOm} at the 
composition of x = 2.85. It is found that Q(3)< 
(t&(Z) + u,(4))/2 and U”(4) < (U”(3)+ W5))/2, 
while Ll”(m)~(Uv(m-l)+Uv(m+1))/2 (m>S), 
where L&(m) is the strain energy per unit volume of the 
infinite ordered {lOm} array at x = 2.85. 

though, that temperature will have a pro- 
found effect on the stability of these phases, 
and higher temperatures may shift the posi- 
tion of stability to other homologs in the 
series. 

D. Stability of the Homologous Oxides in a 
{lOm} Array 

In our preceding publications we have 
calculated the relative stabilities of the 
members of several of the possible homolo- 
gous series of oxides Wn03n-(m-l) (16). It is 
therefore desirable to repeat the calculations 
here to compare the predictions of the 
Fourier transform method with that of the 
classical method used earlier. The technique 
is straightforward mathematically. 

Imagine a crystal of the oxide 
Wn03n-(m-i) containing an ordered array of 
{lOm} CS planes. Simply by redistributing 
the CS planes laterally, we can formally 
convert the original crystal into a crystal 
which contains two phases, Wn103n1-(m-l) 
and Wnz03n2-(m-~)l distributed alternately 
without changing the total number of CS 
planes, that is, 

2wno3,-(,-1) = Wnl03nl-(m-1) 

+Wnz03n2-(m-l). (16) 

Though there are a number of combinations 
of n1 and n2 which are subject to the condi- 
tion of Eq. (16), we have employed the 
couple nr=n-1 and n2 = n + 1. The 
theoretical treatment is the same as for an 
infinite ordered array except that we have 
chosen the origin of the coordinates in the 
“two-phase” mixture to be midway along the 
vector D, from the origin of the unit cell 
of W(n-1)03(n-l)-(m-l) to that of 
W~n+r~03(n+r)-(m-l). This is illustrated for the 
case of (102) CS planes in Fig. 10. It is 
important to note the structure of this array 
carefully. In the Fourier transform method it 
is vital to employ a periodic structure. In our 
case it forces us to consider not a subdivision 
of the crystal into two separate parts, one of 
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FIG. 10. A crystal containing two phases, W70z0 and 
W90z6. based upon {102} CS. The periodic unit cell is 
the “two-phase” mixture is indicated by broken lines. 
The origin of the coordinates in the “two-phase” mix- 
ture is taken to be midway along the vector D from the 
origin of the W702,, unit cell to the origin of the W90zh 
unit cell. 

which is the (n - 1) homologue and one of 
which is the (n + 1) homologue, but into a 
crystal which consists of a totally ordered 
array of alternating (n - 1) and (n + 1) 
slabs. 

The Fourier transformed defect force of 
the “two-phase” mixture, 8”k(q), has the 
form 

fimi,(q) = r-z,2 F(r- D/2) eiqcreD”) 

+ c F(r + D/2) eiq(r+D’2) 
r+D/2 

= 2 cos (qD/2)6(q), (17) 

where the vector D has the form 

D=2(2n-2m-l)a+2c for (lOm}, 

D=-2a-2(2n -3)~ for (001). 
(18) 

The vector L, in Eq. (4) is replaced by the 
vector Lmix shown as follows: 

Lmiv = L”-j+ L”+l= 2Ln. (19) 

Using these relations, we have calculated the 
energy per unit volume of the “two-phase” 
mixture which is denoted as IJmiX. ‘The 
difference in energy per unit volume, 3U,, = 
V, - Umix, is easily obtained as a function of 
it for the cases of interest. If 4U, is positive, 
the oxide Wn03n+(mplJ has a higher overall 
elastic strain energy, and the sample would 
gain by disproportionation into the ordered 
array of alternating (n - I’) and (n + li lam- 
ellae. If 4U, is negative, disproportiona- 
tion would increase the strain energy in 
the system and disproportionation is less 
likely. 

For {102}, {103}, and (001) arrays. the 
results show that disproportionation into an 
ordered array will not usually take place if a 
lowering of elastic strain is the factor of 
prime importance. This is not surprising, as 
no such ordered arrays have ever been found 
experimentally, and other factors, such as 
entropy, will have a significant contribution 
to make to the energy of an ordered system. 
However, in a few cases it was found that 
such a disproportion was favorable in terms 
of elastic strain, and if the elastic strain terms 
dominate, such ordered (n + 1) + !n - 1) 
arrays could possibly form. Although these 
have not been observed in the C’S phases, 
they have been found in some of the inter- 
growth tungsten bronze phases recently 
reported, notably in the Sn,WO? and 
Pb,WOs systems (23). 

E. Conclusions 

In our previous work (13, 14) the matrix 
between CS planes is assumed to be an iso- 
tropic continuum and the defect forces from 
surrounding CS planes cannot pass through a 
CS plane at all. On the other hand, in this 
report, not only the matrix between CS 
planes but also the regions of CS planes are 
treated as isotropic continua and the defect 
forces can pass through CS planes without 
any damping. In spite of the differetice 
between these two models, most of the 
results in this report are similar to the results 
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in our previous work. Therefore, one cannot 
conclude which model is better. In order to 
clarify this point, we have to establish a 
correlation between the theory and the ex- 
perimental observations in more detail. 
To do this it is important to consider 
situations much closer to equilibrium. To 
this end, CS phases heated for periods of 
time of several months are needed. The 
results of such studies will be reported in 
the future. 
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